22 research outputs found

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil

    Boosting rare benthic macroinvertebrates taxa identification with one-class classification

    Get PDF
    Insect monitoring is crucial for understanding the consequences of rapid ecological changes, but taxa identification currently requires tedious manual expert work and cannot be scaled-up efficiently. Deep convolutional neural networks (CNNs), provide a viable way to significantly increase the biomonitoring volumes. However, taxa abundances are typically very imbalanced and the amounts of training images for the rarest classes are simply too low for deep CNNs. As a result, the samples from the rare classes are often completely missed, while detecting them has biological importance. In this paper, we propose combining the trained deep CNN with one-class classifiers to improve the rare species identification. One-class classification models are traditionally trained with much fewer samples and they can provide a mechanism to indicate samples potentially belonging to the rare classes for human inspection. Our experiments confirm that the proposed approach may indeed support moving towards partial automation of the taxa identification task.Comment: 5 pages, 1 figure, 2 table

    Subspace Support Vector Data Description and Extensions

    Get PDF
    Machine learning deals with discovering the knowledge that governs the learning process. The science of machine learning helps create techniques that enhance the capabilities of a system through the use of data. Typical machine learning techniques identify or predict different patterns in the data. In classification tasks, a machine learning model is trained using some training data to identify the unknown function that maps the input data to the output labels. The classification task gets challenging if the data from some categories are either unavailable or so diverse that they cannot be modelled statistically. For example, to train a model for anomaly detection, it is usually challenging to collect anomalous data for training, but the normal data is available in abundance. In such cases, it is possible to use One-Class Classification (OCC) techniques where the model is trained by using data only from one class. OCC algorithms are practical in situations where it is vital to identify one of the categories, but the examples from that specific category are scarce. Numerous OCC techniques have been proposed in the literature that model the data in the given feature space; however, such data can be high-dimensional or may not provide discriminative information for classification. In order to avoid the curse of dimensionality, standard dimensionality reduction techniques are commonly used as a preprocessing step in many machine learning algorithms. Principal Component Analysis (PCA) is an example of a widely used algorithm to transform data into a subspace suitable for the task at hand while maintaining the meaningful features of a given dataset. This thesis provides a new paradigm that jointly optimizes a subspace and data description for one-class classification via Support Vector Data Description (SVDD). We initiated the idea of subspace learning for one class classification by proposing a novel Subspace Support Vector Data Description (SSVDD) method, which was further extended to Ellipsoidal Subspace Support Vector Data Description (ESSVDD). ESSVDD generalizes SSVDD for a hypersphere by using ellipsoidal data description and it converges faster than SSVDD. It is important to train a joint model for multimodal data when data is collected from multiple sources. Therefore, we also proposed a multimodal approach, namely Multimodal Subspace Support Vector Data Description (MSSVDD) for transforming the data from multiple modalities to a common shared space for OCC. An important contribution of this thesis is to provide a framework unifying the subspace learning methods for SVDD. The proposed Graph-Embedded Subspace Support Vector Data Description (GESSVDD) framework helps revealing novel insights into the previously proposed methods and allows deriving novel variants that incorporate different optimization goals. The main focus of the thesis is on generic novel methods which can be adapted to different application domains. We experimented with standard datasets from different domains such as robotics, healthcare, and economics and achieved better performance than competing methods in most of the cases. We also proposed a taxa identification framework for rare benthic macroinvertebrates. Benthic macroinvertebrate taxa distribution is typically very imbalanced. The amounts of training images for the rarest classes are too low for properly training deep learning-based methods, while these rarest classes can be central in biodiversity monitoring. We show that the classic one-class classifiers in general, and the proposed methods in particular, can enhance a deep neural network classification performance for imbalanced datasets

    Railway vehicle detection from audio recordings using one-class classification

    Get PDF
    In this thesis, we focus on detecting a train from the sound generated by it. An audio sensor is placed close to a railway track to record ambient sounds which may or may not originate from a train. In this problem, we de ne the target event as the recording of a train sound and non-target events are all other audio events that are recorded by the audio sensor. In machine learning and pattern recognition, classifiers are trained from labeled data to categorize a new observation. Classifiers are usually trained from data which contain all possible classes, however it is possible that during training the classifier, for some classes the data is either not available or it is so diverse in nature that it cannot be used reliably. In case of binary classification, if one of the classes do not have reliable training data, we can use a \one class classification" strategy which only uses single class data for training. For train detection from audio, we compared a one-class classi er called support vector data description (SVDD) with binary classifiers and showed that SVDD performs well in cases where data from the outlier class is scarce. We also tested the SVDD trained model in real time and the results indicate that the goal of reducing the false positive rate is satisfactorily achieved. The tests are performed using audio data recorded in Bathmen, a town in eastern Netherlands, by the company Sensornet for a project about railway vehicle detection and sound level monitoring

    Newton Method-based Subspace Support Vector Data Description

    Full text link
    In this paper, we present an adaptation of Newton's method for the optimization of Subspace Support Vector Data Description (S-SVDD). The objective of S-SVDD is to map the original data to a subspace optimized for one-class classification, and the iterative optimization process of data mapping and description in S-SVDD relies on gradient descent. However, gradient descent only utilizes first-order information, which may lead to suboptimal results. To address this limitation, we leverage Newton's method to enhance data mapping and data description for an improved optimization of subspace learning-based one-class classification. By incorporating this auxiliary information, Newton's method offers a more efficient strategy for subspace learning in one-class classification as compared to gradient-based optimization. The paper discusses the limitations of gradient descent and the advantages of using Newton's method in subspace learning for one-class classification tasks. We provide both linear and nonlinear formulations of Newton's method-based optimization for S-SVDD. In our experiments, we explored both the minimization and maximization strategies of the objective. The results demonstrate that the proposed optimization strategy outperforms the gradient-based S-SVDD in most cases.Comment: 8 pages, 2 figures, 2 tables, 1 Algorithm. Accepted at IEEE Symposium Series on Computational Intelligence 202

    Subspace Support Vector Data Description

    Full text link
    This paper proposes a novel method for solving one-class classification problems. The proposed approach, namely Subspace Support Vector Data Description, maps the data to a subspace that is optimized for one-class classification. In that feature space, the optimal hypersphere enclosing the target class is then determined. The method iteratively optimizes the data mapping along with data description in order to define a compact class representation in a low-dimensional feature space. We provide both linear and non-linear mappings for the proposed method. Experiments on 14 publicly available datasets indicate that the proposed Subspace Support Vector Data Description provides better performance compared to baselines and other recently proposed one-class classification methods.Comment: 6 pages, submitted/accepted, ICPR 201

    Credit Card Fraud Detection with Subspace Learning-based One-Class Classification

    Full text link
    In an increasingly digitalized commerce landscape, the proliferation of credit card fraud and the evolution of sophisticated fraudulent techniques have led to substantial financial losses. Automating credit card fraud detection is a viable way to accelerate detection, reducing response times and minimizing potential financial losses. However, addressing this challenge is complicated by the highly imbalanced nature of the datasets, where genuine transactions vastly outnumber fraudulent ones. Furthermore, the high number of dimensions within the feature set gives rise to the ``curse of dimensionality". In this paper, we investigate subspace learning-based approaches centered on One-Class Classification (OCC) algorithms, which excel in handling imbalanced data distributions and possess the capability to anticipate and counter the transactions carried out by yet-to-be-invented fraud techniques. The study highlights the potential of subspace learning-based OCC algorithms by investigating the limitations of current fraud detection strategies and the specific challenges of credit card fraud detection. These algorithms integrate subspace learning into the data description; hence, the models transform the data into a lower-dimensional subspace optimized for OCC. Through rigorous experimentation and analysis, the study validated that the proposed approach helps tackle the curse of dimensionality and the imbalanced nature of credit card data for automatic fraud detection to mitigate financial losses caused by fraudulent activities.Comment: 6 pages, 1 figure, 2 tables. Accepted at IEEE Symposium Series on Computational Intelligence 202

    Hyperspectral Image Analysis with Subspace Learning-based One-Class Classification

    Full text link
    Hyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification. Due to the significant amount of spectral information from recent HSI sensors, analyzing the acquired images is challenging using traditional Machine Learning (ML) methods. As the number of frequency bands increases, the required number of training samples increases exponentially to achieve a reasonable classification accuracy, also known as the curse of dimensionality. Therefore, separate band selection or dimensionality reduction techniques are often applied before performing any classification task over HSI data. In this study, we investigate recently proposed subspace learning methods for one-class classification (OCC). These methods map high-dimensional data to a lower-dimensional feature space that is optimized for one-class classification. In this way, there is no separate dimensionality reduction or feature selection procedure needed in the proposed classification framework. Moreover, one-class classifiers have the ability to learn a data description from the category of a single class only. Considering the imbalanced labels of the LULC classification problem and rich spectral information (high number of dimensions), the proposed classification approach is well-suited for HSI data. Overall, this is a pioneer study focusing on subspace learning-based one-class classification for HSI data. We analyze the performance of the proposed subspace learning one-class classifiers in the proposed pipeline. Our experiments validate that the proposed approach helps tackle the curse of dimensionality along with the imbalanced nature of HSI data

    One-Class Classification for Intrusion Detection on Vehicular Networks

    Full text link
    Controller Area Network bus systems within vehicular networks are not equipped with the tools necessary to ward off and protect themselves from modern cyber-security threats. Work has been done on using machine learning methods to detect and report these attacks, but common methods are not robust towards unknown attacks. These methods usually rely on there being a sufficient representation of attack data, which may not be available due to there either not being enough data present to adequately represent its distribution or the distribution itself is too diverse in nature for there to be a sufficient representation of it. With the use of one-class classification methods, this issue can be mitigated as only normal data is required to train a model for the detection of anomalous instances. Research has been done on the efficacy of these methods, most notably One-Class Support Vector Machine and Support Vector Data Description, but many new extensions of these works have been proposed and have yet to be tested for injection attacks in vehicular networks. In this paper, we investigate the performance of various state-of-the-art one-class classification methods for detecting injection attacks on Controller Area Network bus traffic. We investigate the effectiveness of these techniques on attacks launched on Controller Area Network buses from two different vehicles during normal operation and while being attacked. We observe that the Subspace Support Vector Data Description method outperformed all other tested methods with a Gmean of about 85%.Comment: 7 pages, 2 figures, 4 tables. Accepted at IEEE Symposium Series on Computational Intelligence 202

    Convolutional autoencoder-based multimodal one-class classification

    Full text link
    One-class classification refers to approaches of learning using data from a single class only. In this paper, we propose a deep learning one-class classification method suitable for multimodal data, which relies on two convolutional autoencoders jointly trained to reconstruct the positive input data while obtaining the data representations in the latent space as compact as possible. During inference, the distance of the latent representation of an input to the origin can be used as an anomaly score. Experimental results using a multimodal macroinvertebrate image classification dataset show that the proposed multimodal method yields better results as compared to the unimodal approach. Furthermore, study the effect of different input image sizes, and we investigate how recently proposed feature diversity regularizers affect the performance of our approach. We show that such regularizers improve performance.Comment: 5 pages, 1 figure, 4 table
    corecore